\(\int \frac {A+B \log (\frac {e (a+b x)^2}{(c+d x)^2})}{f+g x} \, dx\) [267]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [F]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 29, antiderivative size = 144 \[ \int \frac {A+B \log \left (\frac {e (a+b x)^2}{(c+d x)^2}\right )}{f+g x} \, dx=-\frac {2 B \log \left (-\frac {g (a+b x)}{b f-a g}\right ) \log (f+g x)}{g}+\frac {\left (A+B \log \left (\frac {e (a+b x)^2}{(c+d x)^2}\right )\right ) \log (f+g x)}{g}+\frac {2 B \log \left (-\frac {g (c+d x)}{d f-c g}\right ) \log (f+g x)}{g}-\frac {2 B \operatorname {PolyLog}\left (2,\frac {b (f+g x)}{b f-a g}\right )}{g}+\frac {2 B \operatorname {PolyLog}\left (2,\frac {d (f+g x)}{d f-c g}\right )}{g} \]

[Out]

-2*B*ln(-g*(b*x+a)/(-a*g+b*f))*ln(g*x+f)/g+(A+B*ln(e*(b*x+a)^2/(d*x+c)^2))*ln(g*x+f)/g+2*B*ln(-g*(d*x+c)/(-c*g
+d*f))*ln(g*x+f)/g-2*B*polylog(2,b*(g*x+f)/(-a*g+b*f))/g+2*B*polylog(2,d*(g*x+f)/(-c*g+d*f))/g

Rubi [A] (verified)

Time = 0.08 (sec) , antiderivative size = 144, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.138, Rules used = {2546, 2441, 2440, 2438} \[ \int \frac {A+B \log \left (\frac {e (a+b x)^2}{(c+d x)^2}\right )}{f+g x} \, dx=\frac {\log (f+g x) \left (B \log \left (\frac {e (a+b x)^2}{(c+d x)^2}\right )+A\right )}{g}-\frac {2 B \operatorname {PolyLog}\left (2,\frac {b (f+g x)}{b f-a g}\right )}{g}-\frac {2 B \log (f+g x) \log \left (-\frac {g (a+b x)}{b f-a g}\right )}{g}+\frac {2 B \operatorname {PolyLog}\left (2,\frac {d (f+g x)}{d f-c g}\right )}{g}+\frac {2 B \log (f+g x) \log \left (-\frac {g (c+d x)}{d f-c g}\right )}{g} \]

[In]

Int[(A + B*Log[(e*(a + b*x)^2)/(c + d*x)^2])/(f + g*x),x]

[Out]

(-2*B*Log[-((g*(a + b*x))/(b*f - a*g))]*Log[f + g*x])/g + ((A + B*Log[(e*(a + b*x)^2)/(c + d*x)^2])*Log[f + g*
x])/g + (2*B*Log[-((g*(c + d*x))/(d*f - c*g))]*Log[f + g*x])/g - (2*B*PolyLog[2, (b*(f + g*x))/(b*f - a*g)])/g
 + (2*B*PolyLog[2, (d*(f + g*x))/(d*f - c*g)])/g

Rule 2438

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2, (-c)*e*x^n]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 2440

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))]*(b_.))/((f_.) + (g_.)*(x_)), x_Symbol] :> Dist[1/g, Subst[Int[(a +
 b*Log[1 + c*e*(x/g)])/x, x], x, f + g*x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] && EqQ[g
 + c*(e*f - d*g), 0]

Rule 2441

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))/((f_.) + (g_.)*(x_)), x_Symbol] :> Simp[Log[e*((f + g
*x)/(e*f - d*g))]*((a + b*Log[c*(d + e*x)^n])/g), x] - Dist[b*e*(n/g), Int[Log[(e*(f + g*x))/(e*f - d*g)]/(d +
 e*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && NeQ[e*f - d*g, 0]

Rule 2546

Int[((A_.) + Log[(e_.)*((a_.) + (b_.)*(x_))^(n_.)*((c_.) + (d_.)*(x_))^(mn_)]*(B_.))/((f_.) + (g_.)*(x_)), x_S
ymbol] :> Simp[Log[f + g*x]*((A + B*Log[e*((a + b*x)^n/(c + d*x)^n)])/g), x] + (-Dist[b*B*(n/g), Int[Log[f + g
*x]/(a + b*x), x], x] + Dist[B*d*(n/g), Int[Log[f + g*x]/(c + d*x), x], x]) /; FreeQ[{a, b, c, d, e, f, g, A,
B, n}, x] && EqQ[n + mn, 0] && NeQ[b*c - a*d, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\left (A+B \log \left (\frac {e (a+b x)^2}{(c+d x)^2}\right )\right ) \log (f+g x)}{g}-\frac {(2 b B) \int \frac {\log (f+g x)}{a+b x} \, dx}{g}+\frac {(2 B d) \int \frac {\log (f+g x)}{c+d x} \, dx}{g} \\ & = -\frac {2 B \log \left (-\frac {g (a+b x)}{b f-a g}\right ) \log (f+g x)}{g}+\frac {\left (A+B \log \left (\frac {e (a+b x)^2}{(c+d x)^2}\right )\right ) \log (f+g x)}{g}+\frac {2 B \log \left (-\frac {g (c+d x)}{d f-c g}\right ) \log (f+g x)}{g}+(2 B) \int \frac {\log \left (\frac {g (a+b x)}{-b f+a g}\right )}{f+g x} \, dx-(2 B) \int \frac {\log \left (\frac {g (c+d x)}{-d f+c g}\right )}{f+g x} \, dx \\ & = -\frac {2 B \log \left (-\frac {g (a+b x)}{b f-a g}\right ) \log (f+g x)}{g}+\frac {\left (A+B \log \left (\frac {e (a+b x)^2}{(c+d x)^2}\right )\right ) \log (f+g x)}{g}+\frac {2 B \log \left (-\frac {g (c+d x)}{d f-c g}\right ) \log (f+g x)}{g}+\frac {(2 B) \text {Subst}\left (\int \frac {\log \left (1+\frac {b x}{-b f+a g}\right )}{x} \, dx,x,f+g x\right )}{g}-\frac {(2 B) \text {Subst}\left (\int \frac {\log \left (1+\frac {d x}{-d f+c g}\right )}{x} \, dx,x,f+g x\right )}{g} \\ & = -\frac {2 B \log \left (-\frac {g (a+b x)}{b f-a g}\right ) \log (f+g x)}{g}+\frac {\left (A+B \log \left (\frac {e (a+b x)^2}{(c+d x)^2}\right )\right ) \log (f+g x)}{g}+\frac {2 B \log \left (-\frac {g (c+d x)}{d f-c g}\right ) \log (f+g x)}{g}-\frac {2 B \text {Li}_2\left (\frac {b (f+g x)}{b f-a g}\right )}{g}+\frac {2 B \text {Li}_2\left (\frac {d (f+g x)}{d f-c g}\right )}{g} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.04 (sec) , antiderivative size = 119, normalized size of antiderivative = 0.83 \[ \int \frac {A+B \log \left (\frac {e (a+b x)^2}{(c+d x)^2}\right )}{f+g x} \, dx=\frac {\left (A-2 B \log \left (\frac {g (a+b x)}{-b f+a g}\right )+B \log \left (\frac {e (a+b x)^2}{(c+d x)^2}\right )+2 B \log \left (\frac {g (c+d x)}{-d f+c g}\right )\right ) \log (f+g x)-2 B \operatorname {PolyLog}\left (2,\frac {b (f+g x)}{b f-a g}\right )+2 B \operatorname {PolyLog}\left (2,\frac {d (f+g x)}{d f-c g}\right )}{g} \]

[In]

Integrate[(A + B*Log[(e*(a + b*x)^2)/(c + d*x)^2])/(f + g*x),x]

[Out]

((A - 2*B*Log[(g*(a + b*x))/(-(b*f) + a*g)] + B*Log[(e*(a + b*x)^2)/(c + d*x)^2] + 2*B*Log[(g*(c + d*x))/(-(d*
f) + c*g)])*Log[f + g*x] - 2*B*PolyLog[2, (b*(f + g*x))/(b*f - a*g)] + 2*B*PolyLog[2, (d*(f + g*x))/(d*f - c*g
)])/g

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(395\) vs. \(2(144)=288\).

Time = 3.37 (sec) , antiderivative size = 396, normalized size of antiderivative = 2.75

method result size
parts \(\frac {A \ln \left (g x +f \right )}{g}+B \left (-\frac {\ln \left (\frac {1}{d x +c}\right ) \ln \left (\frac {e \left (\frac {a d}{d x +c}-\frac {b c}{d x +c}+b \right )^{2}}{d^{2}}\right )-\left (2 a d -2 c b \right ) \left (\frac {\operatorname {dilog}\left (\frac {\frac {a d -c b}{d x +c}+b}{b}\right )}{a d -c b}+\frac {\ln \left (\frac {1}{d x +c}\right ) \ln \left (\frac {\frac {a d -c b}{d x +c}+b}{b}\right )}{a d -c b}\right )}{g}+\frac {\left (\frac {\ln \left (\frac {c g -d f}{d x +c}-g \right ) \ln \left (\frac {e \left (\frac {a d}{d x +c}-\frac {b c}{d x +c}+b \right )^{2}}{d^{2}}\right )}{c g -d f}-\frac {2 \left (a d -c b \right ) \left (\frac {\operatorname {dilog}\left (\frac {\left (\frac {c g -d f}{d x +c}-g \right ) \left (a d -c b \right )+a d g -b d f}{a d g -b d f}\right )}{a d -c b}+\frac {\ln \left (\frac {c g -d f}{d x +c}-g \right ) \ln \left (\frac {\left (\frac {c g -d f}{d x +c}-g \right ) \left (a d -c b \right )+a d g -b d f}{a d g -b d f}\right )}{a d -c b}\right )}{c g -d f}\right ) \left (c g -d f \right )}{g}\right )\) \(396\)
derivativedivides \(-\frac {-d A \left (-\frac {\ln \left (\frac {1}{d x +c}\right )}{g}+\frac {\ln \left (\frac {c g}{d x +c}-\frac {f d}{d x +c}-g \right )}{g}\right )-d B \left (-\frac {\ln \left (\frac {1}{d x +c}\right ) \ln \left (\frac {e \left (\frac {a d}{d x +c}-\frac {b c}{d x +c}+b \right )^{2}}{d^{2}}\right )-\left (2 a d -2 c b \right ) \left (\frac {\operatorname {dilog}\left (\frac {\frac {a d -c b}{d x +c}+b}{b}\right )}{a d -c b}+\frac {\ln \left (\frac {1}{d x +c}\right ) \ln \left (\frac {\frac {a d -c b}{d x +c}+b}{b}\right )}{a d -c b}\right )}{g}+\frac {\left (\frac {\ln \left (\frac {c g -d f}{d x +c}-g \right ) \ln \left (\frac {e \left (\frac {a d}{d x +c}-\frac {b c}{d x +c}+b \right )^{2}}{d^{2}}\right )}{c g -d f}-\frac {2 \left (a d -c b \right ) \left (\frac {\operatorname {dilog}\left (\frac {\left (\frac {c g -d f}{d x +c}-g \right ) \left (a d -c b \right )+a d g -b d f}{a d g -b d f}\right )}{a d -c b}+\frac {\ln \left (\frac {c g -d f}{d x +c}-g \right ) \ln \left (\frac {\left (\frac {c g -d f}{d x +c}-g \right ) \left (a d -c b \right )+a d g -b d f}{a d g -b d f}\right )}{a d -c b}\right )}{c g -d f}\right ) \left (c g -d f \right )}{g}\right )}{d}\) \(440\)
default \(-\frac {-d A \left (-\frac {\ln \left (\frac {1}{d x +c}\right )}{g}+\frac {\ln \left (\frac {c g}{d x +c}-\frac {f d}{d x +c}-g \right )}{g}\right )-d B \left (-\frac {\ln \left (\frac {1}{d x +c}\right ) \ln \left (\frac {e \left (\frac {a d}{d x +c}-\frac {b c}{d x +c}+b \right )^{2}}{d^{2}}\right )-\left (2 a d -2 c b \right ) \left (\frac {\operatorname {dilog}\left (\frac {\frac {a d -c b}{d x +c}+b}{b}\right )}{a d -c b}+\frac {\ln \left (\frac {1}{d x +c}\right ) \ln \left (\frac {\frac {a d -c b}{d x +c}+b}{b}\right )}{a d -c b}\right )}{g}+\frac {\left (\frac {\ln \left (\frac {c g -d f}{d x +c}-g \right ) \ln \left (\frac {e \left (\frac {a d}{d x +c}-\frac {b c}{d x +c}+b \right )^{2}}{d^{2}}\right )}{c g -d f}-\frac {2 \left (a d -c b \right ) \left (\frac {\operatorname {dilog}\left (\frac {\left (\frac {c g -d f}{d x +c}-g \right ) \left (a d -c b \right )+a d g -b d f}{a d g -b d f}\right )}{a d -c b}+\frac {\ln \left (\frac {c g -d f}{d x +c}-g \right ) \ln \left (\frac {\left (\frac {c g -d f}{d x +c}-g \right ) \left (a d -c b \right )+a d g -b d f}{a d g -b d f}\right )}{a d -c b}\right )}{c g -d f}\right ) \left (c g -d f \right )}{g}\right )}{d}\) \(440\)
risch \(\text {Expression too large to display}\) \(1109\)

[In]

int((A+B*ln(e*(b*x+a)^2/(d*x+c)^2))/(g*x+f),x,method=_RETURNVERBOSE)

[Out]

A*ln(g*x+f)/g+B*(-(ln(1/(d*x+c))*ln(e*(a*d/(d*x+c)-b*c/(d*x+c)+b)^2/d^2)-(2*a*d-2*b*c)*(dilog(((a*d-b*c)/(d*x+
c)+b)/b)/(a*d-b*c)+ln(1/(d*x+c))*ln(((a*d-b*c)/(d*x+c)+b)/b)/(a*d-b*c)))/g+(ln((c*g-d*f)/(d*x+c)-g)/(c*g-d*f)*
ln(e*(a*d/(d*x+c)-b*c/(d*x+c)+b)^2/d^2)-2/(c*g-d*f)*(a*d-b*c)*(dilog((((c*g-d*f)/(d*x+c)-g)*(a*d-b*c)+a*d*g-b*
d*f)/(a*d*g-b*d*f))/(a*d-b*c)+ln((c*g-d*f)/(d*x+c)-g)*ln((((c*g-d*f)/(d*x+c)-g)*(a*d-b*c)+a*d*g-b*d*f)/(a*d*g-
b*d*f))/(a*d-b*c)))/g*(c*g-d*f))

Fricas [F]

\[ \int \frac {A+B \log \left (\frac {e (a+b x)^2}{(c+d x)^2}\right )}{f+g x} \, dx=\int { \frac {B \log \left (\frac {{\left (b x + a\right )}^{2} e}{{\left (d x + c\right )}^{2}}\right ) + A}{g x + f} \,d x } \]

[In]

integrate((A+B*log(e*(b*x+a)^2/(d*x+c)^2))/(g*x+f),x, algorithm="fricas")

[Out]

integral((B*log((b^2*e*x^2 + 2*a*b*e*x + a^2*e)/(d^2*x^2 + 2*c*d*x + c^2)) + A)/(g*x + f), x)

Sympy [F(-1)]

Timed out. \[ \int \frac {A+B \log \left (\frac {e (a+b x)^2}{(c+d x)^2}\right )}{f+g x} \, dx=\text {Timed out} \]

[In]

integrate((A+B*ln(e*(b*x+a)**2/(d*x+c)**2))/(g*x+f),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {A+B \log \left (\frac {e (a+b x)^2}{(c+d x)^2}\right )}{f+g x} \, dx=\int { \frac {B \log \left (\frac {{\left (b x + a\right )}^{2} e}{{\left (d x + c\right )}^{2}}\right ) + A}{g x + f} \,d x } \]

[In]

integrate((A+B*log(e*(b*x+a)^2/(d*x+c)^2))/(g*x+f),x, algorithm="maxima")

[Out]

-B*integrate(-(2*log(b*x + a) - 2*log(d*x + c) + log(e))/(g*x + f), x) + A*log(g*x + f)/g

Giac [F]

\[ \int \frac {A+B \log \left (\frac {e (a+b x)^2}{(c+d x)^2}\right )}{f+g x} \, dx=\int { \frac {B \log \left (\frac {{\left (b x + a\right )}^{2} e}{{\left (d x + c\right )}^{2}}\right ) + A}{g x + f} \,d x } \]

[In]

integrate((A+B*log(e*(b*x+a)^2/(d*x+c)^2))/(g*x+f),x, algorithm="giac")

[Out]

integrate((B*log((b*x + a)^2*e/(d*x + c)^2) + A)/(g*x + f), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \log \left (\frac {e (a+b x)^2}{(c+d x)^2}\right )}{f+g x} \, dx=\int \frac {A+B\,\ln \left (\frac {e\,{\left (a+b\,x\right )}^2}{{\left (c+d\,x\right )}^2}\right )}{f+g\,x} \,d x \]

[In]

int((A + B*log((e*(a + b*x)^2)/(c + d*x)^2))/(f + g*x),x)

[Out]

int((A + B*log((e*(a + b*x)^2)/(c + d*x)^2))/(f + g*x), x)